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MACROSCOPIC AND MICROSCOPIC VIEWPOINT OF THERMODYNAMICS
The behaviour of a matter can be studied at two levels: a) Macroscopic. b) Microscopic.
Macroscopic ( or classical thermodynamics):
e In this approach, a certain quantity of matter is considered, without taking into account
the events occurring at the molecular level.
e This macroscopic approach to the study of thermodynamics that does not require
knowledge of the behaviour of individual particles.
e Macroscopic thermodynamics is only concerned with the effects of the action of many
molecules, and these effects can be perceived by human senses.
e The macroscopic observations are completely independent of the assumptions
regarding the nature of matter.
e Example: A moving car, a falling stone from a cliff, etc.
Microscopic ( or statistical thermodynamics):
e From the microscopic viewpoint, matter is composed of a large number of small
molecules and atoms.
e This microscopic approach to the study of thermodynamics that require knowledge
of the behaviour of individual particles.
e Microscopic thermodynamics i1s concerned with the effects of the action of many
molecules, and these effects cannot be perceived by human senses.
e The microscopic observations are completely dependent on the assumptions
regarding the nature of matter.

e Example: Individual molecules present in air, efc.



across them. H eat transfer then always occurs across a boundary not crossed by mass.

3 Microstates and T hermodynamic States

The state of a system is an important concept in thermodynamics and is defined as
the complete set of all its properties which can change during various specified processes.
The properties which comprise this set depend on the kinds of interactions which can take
place both within the system and between the system and its surroundings. Any two
systems, subject to the same group of processes, which have the same values of all properties
in this set are then indistinguishable and we describe them as being in identical states.

A process in thermodynamics is defined as a methed of cperation in which specific
guantities of heat and various types of work aretransferred to or from the system to alter its
state. As we pointed out, one of the objectives of thermodynamics is to rdate these state
changes in a system to the quantity of enegy in the form of heat and work transferred
across its boundaries.

In discussing non-thermodynamic processes, a system may be chosen as a single
ultimate particlewithin alarge quantity of matter. |n the absence of chemical reactions the
only processes in which it can participate are transfers of kinetic or potential energy to or
from the particle. In this case we would like to relate these energy transfes to changes in
the microstate of the system. A microstate for this one-particle system is a set of coordinates
in a multi-dimensional space indicating its position and its momenta in various vector
directions. For example, a simple rigid spherical monatomic molecule would reguirea total
of six such coordinates, three for its position and three for its momentum in order to
completely defineits microstate.

Now consider a system containing a large number of these ultimate particles. A
microstate of this system is a set of all position and momentum values for all the particles.
For example, if there were N rigid spherical molecules we would then ned 6N coordinates
to give a complete set of all the microstate properties and define a microstate for this system.
In a multiparticle system a particular microstate exists only for an instant and is then
replaced by ancther so that there is no experimental way to measurethe set of positions and
motions which comprise one microstate among the vast number of them which occur
sequentially.

Because the microstates of a multiparticle system represent exactly what all the
particles aredoing, all thermodynamic properties of thegroup arethus deemined by them.
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3 Microstates and Thermodynanuc States

The state of a system 1s an umportant concept in thermodynamics and 1s defined as
the complete set of all its properties which can change during various specified processes.
The properties which comprise this set depend on the kinds of interactions which can take
place both wnthin the system and between the system and its surroundings. Any two
systens, subject to the same group of processes, which have the same values of all properties
m this set are then indistinguishable and we describe thent as being in identical states.

A process in thermodynanucs is defined as a method of eperation in which specific
quantities of heat and various types of work arve transferred to or from the system to alter its
state. As we pomted out, one of the objectives of thermodynamics s to relate these state
changes in a system to the quantity of energy m the form of heat and work transferred
across its boundaries.

In discussing non-thermodynamic processes, a systemt may be chosen as a single
ultimate particle within a larger quantity of matter. In the absence of chemical reactions the
only processes in which it can participate are transfers of kinetic or potential energy to or
from the particle. In this case we would like to relate these energy transfers to changes in
the microstate of the system. A mucrostate for this one-particle system 1s a set of coordinates
m a multi-dimensional space mdicating its position and its momenta 1 various vector
directions. For example, a simple ngid spherical monatomic moleciile would require a total
of six such coordinates, three for its position and three for its momentum m order to
completely define its microstate.

Now consider a system contmning a large number of these ultimate particles. A
microstate of this system 1s a set of all position and momentum values for all the particles.
For example, 1f there were N ngid spherical molecules we would then need 6N coordinates
to give a complete set of all the microstate properties and define a microstate for this system.
In a multiparticle system a particular microstate exists only for an instant and 1s then
replaced by another so that there 1s no experimental way to measure the set of positions and
motions which comprise one microstate among the vast number of them which occur
sequentially.

Because the nmucrostates of a multiparticle system represent exactly what all the

particles are doing, all thermodynamic properties of the group are thus determined by them.



With this common origin all the thermodynamic properties arve therefore related to each
other and we need to develop this relationship. The set of all the thermodynamic properties
of a multiparticle system its temperature, pressure, volume, mternal energy, etc., 1s defined
as the thermodynanuc state of this system.

An mmportant aspect of this relationslip between thermodynamic properties 1s the
question of how many different thermodynarmic properties of a gwen equalibruum system are
mdependently varable. The number of these represents the smallest number of properties
wluch must be specified 1 order to completely determine the entire thermodynanuc state of
the system. All other thermodynamic properties of this system are then fixed and can be
calculated from these specified values. The number of these values which must be specified

1s called the variance or the degrees of freedom of the systen.

5 Microstate Driving Forces

In order to explain the nature of driving forces, suppose we consider first a system
defined as a single ultumate particle of a simple fluid, either a gas or a liquid. The system m
this case 1s a rigid spherical mass with no possibilities for any internal changes and obeying
Newtonian mechanics. In its surroundings ave similar ultimate particles of this fhud.
From a Newtonman pomnt of view the mass of this system resists any change in its condition
of motion and a specific change occurs only with the application of an external force to
overcome the inertial resistance inherent in the mass. In the presence of mutual attraction
and repulsion between this system and neighboring particles it may be considered to resist
any displacement from a position m which this attraction and repulsion are balanced. In
this situation a force vector directed toward the center of mass must be applied for a fixed
time period to produce a change. Tlus force is produced by the envivomment around the
particle chosen as the system. The mechanism for its generation is by the action of
neighboring particles in exerting attraction or repulsion or wn colliding with the systent.
The scalar product of the vector force generated wn this manner wnth other vectors which
represent the resulting displacements m posttion and velocity of the system deternune the
energy added to the system when its velocity 1s increased, when 1ts position 1s moved away
from attracting neighbers, or when moved toward neighbors which repel it.

Since these displacements represent changes m microstate properties, we define the
force vector proeducing them as a "mucrostate driving force." According to Newtonian
mechanics this applied force 15 always opposed by an equal and opposite force representing
the resistance of the system to change. Although mechanically we could position these two

forces anywhere along thew Iine of action, in terms of the system 1t 1s conventent to think of



them as opposing one another at the boundary of the system to describe energy in transition
across it and then as opposing one another within the system when we describe this
quantity of energy as the energy change of the system. An unportant characteristic of
microstate driving forces is that they are true force vectors in the Newtonian sense and there
is never a condition of unbalanced driving forces. Tlus 1s not at all the case for what we will
define as "thermodynamic driving forces" which are the agents of change for

thermodynamic properties in multiparticle systems.

18  Microstates in Isolated Systems

To explain why melecules always behave as though instructions of this type are
completely ignorved, tmagine that we have a fantastic camera capable of making a
multidimensional picture which could show at any instant where all the ultimate particles
in the system are located and reveal every type of motion taking place, indicating its
location, speed, and direction. Every type of distinguishably different action at any moment,
the vibration, tuisting, or stretclung within molecules as well as their translational and
rotational movements, would be identified n this manner for every molecule in the systen.
This picture would thus be a photograph of what we have defined as an instantaneous
microstate of the system.

Now, wstead of the mstructions on the signs i Figure I, suppose we ask the
molecules to do everytlung they can do by themselves i a rigid walled and i1solated
contamner where no external arranging or directing operations are possible. We will say,
"Molecules, please begin now and arrange yourselves m a sequence of poses for pictures
which wnll show every possible mucrostate which can exist m your system under the
restrictions intposed by your own nature and the conditions of 1solation n the container”.

If we expressed these restrictions as a list of rules to be followed 1n assigning molecules to



molecules winch have the same mass, size, shape, and the same interaction potential with
thewr neighbors can be ndindually rotated among the same sets of positions and motions
with no change at all m the total energy, volume, or total number of molecules. However,
other thermodynanuc properties may be affected by this procedure depending on whether or
not any of these molecules are i some way distinguishable among themselves. For example,
suppose that m one of the containers half the molecules were isotopes of the other half, or
were panted a different color, or had some other feature which distinguished them, but
otherwise did not alter thewr 1dentical mdivdual properties and mteractions. In this case,
one of the thermodynamic properties, the change in the Helmholtz free energy measures the
nuninum work needed to make an 1sothermal separation of the molecules of each kind from
an nitially homogeneous nuxture into two subregions of the contaner. If the molecules are
distinguishable, this work exists and a change in Helmholtz free energy occurs. However, if
they are not, then every arrangement of theni is, according to all possible detection methods,
at all times both separated to any degree and also simultaneously mixed to any degree.
Consequently there 1s no work involved in obtatning any degree of separation or mixing and
therefore no change in Helmholtz free energy as the molecules are interchanged with each
other.

We also note that, since no two molecules can have exactly the same position and
motion, the number of permutations of an allowable assignment of N molecules to the same
set of positions and motions in a particular molecular state 1s N! and tlus number 1s the
same for all other nucrostates. Consequently no one microstateis grven a greater number of
ways of being produced than any other merely by permutation of the indindual molecules
among thetr assignments. For indistinguishable molecules then, in collecting all possible
microstate pictures we shall onut all the duplicates caused by these permutations and

consider them as one single state.



vartous positions and motions, the list would appear as follows:

1. In distributing yourselves among the various posttions and niotions for each nucrostate
picture, do not violate any energy conservation laws. Consequently, because you are in
an isolated system the sum of all your individual translational, vibrational, and
rotational kinetic energies plus all your imtermolecular potential energies must always
be the same and equal to the fixed total internal energy of the systen.

2. Likewse, do not violate any mass conservation laws. There are to be no chemical
reactions among vou so that the total number of individual molecules assigned must
always remain the same.

3. All of you must, of course, vemain at all times within the container so the total volume
in which you distribute yourselves must be constant.

4. Do not violate any laws of physics applicable to your particular molecular species. You
must remember that no two of you can have all of your nucrostate position and niotion
characteristics exactly the same otherwise you would have to occupy the same space at
the same time. Furthermore, do not be concerned that there might not be enough
different nucrostates available for each of you to have a different one. Although you are
numerous, the number of different possible position and motion valies is even niore
numerous, so that there will never be enough of you to fill all of them and many
posstble values will be left unoccupied by a molecule in each picture for wiich you pose.

19  Distinguishable and Indistinguishable Microstates

With these rules explmned, the molecules then arrange themselves for thewr first
microstate picture. Immediately, however, a question arises. The molecules could express
this best by saying: "You asked us to show you every different way we could assign
ourselves to all possible positions and motions, but there are billions and billions of us which
are exactly alike and there is no way that you or your camera can distinguish one individual
from another. Also, we are such a disorderly group that you won't be able to identifyy anyone
by observing where he came from. As a result, we could make the very same pose for you
again and agmn by rotating different mdimduals of the same species among the same
particular set of posttions and motions of a grven overall nucrostate. If you photographed all
of these you would have an enormous number of pictures all exactly alike. Do you want all
of these?"

Tlus requires some careful consideration. The reason we want the microstate pictures

is to be able to explain the thermodynamic properties and behavior of the group. Any



21 The Number of Distinguishable Microstates

Now that it is clearly understood that as a nonlocalized system only one assignment of
indiondual molecules to each set of positions and motions 1s needed, the molecules then
continue to pose for pictures of every distinguishable nucrostate possible i a rigid walled
isolated system. We might at first worry that there could be an imfinitely large number of
these so that we would never see them all, but as a consequence of an important princple in
physics, this number 1s finite although enormously large.

Because of the uncertmnty principle there is a lower limt to the variations which
can be detected between any two microstates, even when our camera is capable of the
maxtmum possible resolution. This minimum arises because the product of the smallest
difference in a position coordinate of a molecule and the smallest difference in a coordinate
representing one of its momentum components forms a tiny area which represents the
smallest detectable different detail which can distinguish a microstate from the one it most
nearly resembles. This small area lies m a two-dimensional slice of the multi-dimensional
picture of all the position and momentum coordinates for all the molecules i the system.
According to our camera with the lighest possible resolution, two such nucrostate pictures

show no detectable difference unless one coordinate of a molecule's position and one

coordinate of tts momentum are altered enough to shift its microstate just outside this small
area. Because this area 1s not zero but a small number, equal to Planck's constant, the
difference between any two microstates cannot be made as small as we please. This means
that there are then a finite number of different microstates for a system with a fixed total
energy, volume, and number of molecules.* Thus cheered by the fact that there is indeed an
end to the process, we continue until we have photographed all possible different muicrostates
which accompany the assigned total internal energy, volume, and number of molecules in

the sys tem.” We then count the mumber of these states and represent it by the symbol Q.



7.a. The Statistical Method

In thermodynamics the equilibrium properties of macroscopic systems are
defined in terms of observable parameters like pressure, volume, etc. These
properties can be experimentally determined by suitable measurements on
macroscopic systems. However, the observable properties of a macroscopic
system (the properties of the total bulk or bulk properties) are the result of
the contributions of its microscopic constituents, atoms, molecules or ions.

[t should be possible to calculate macroscopic properties of a system from
a suitable summation of the properties of microscopic constituents. This is
precisely the aim of statistical mechanics. Statistical thermodynamics is con-
cerned with the calculation of quantities such as heat capacity, entropy, etc.
in terms of atomic and molecular parameters.

Atoms and molecules being so small, it is generally not possible to keep
track of the very large number of atoms and molecules constituting a mac-
roscopic system. One can obtain information about individual atoms or
molecules by solving quantum mechanical equations and obtaining wave
functions or by using spectroscopic techniques of various kinds. Any theory
that attempts to interpret the behaviour of such systems in terms of their con-
stituents must therefore rely on statistical methods. The statistical method is
applicable to both, systems in equilibrium and time-dependent systems or
rate processes. The former aspect will be discussed here.

Even in the absence of any information about specific individual particles
in a large assembly of particles, the properties can be predicted by using
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the laws of probability. The precision of these predictions increases with the
number of particles. For example, it is not possible to predict whether an iso-
lated atom of radium will disintegrate within a stipulated period. However, if
one milligram of radium (approximately 2.73 x 10'® atoms) is considered, it
can be shown that nearly 7 X 10'° atoms will decay in a period of 30 minutes.
The word probability is commonly used to indicate the likelihood of an event
taking place. Suppose a coin is flipped or tossed. Only two results are pos-
sible, i.e. either the head or the tail will show up. The probability of the head
showing up is 1/2. This does not mean that if a person tosses a coin 10 times
or tosses 10 coins, the chance of getting ‘heads’ is 5. In practice it will be dif-
ferent from 5. However, as the number of trials or number of coins increases,
the chances of getting ‘heads’ is closer to 50% of the trials. The probability of
any event occurring is given by
number of cases favouring a given occurrence ¢

Probability = - =— (7.1)
total number of equally possible cases r

For example, one card can be drawn from a deck of cards in 52 different
ways i.e. T = 52. Of the 52, there are 26 red cards and 26 black cards. The
probability of drawing a black or red card = 26/52 = 5. There are 13 in each
of the following, diamond, club, heart and spade. A spade can be drawn from
the deck in 13 different ways, i.e. ¢ = 13 and so the probability of drawing
a spade is 13/52 or 1/4. Since there are four aces, ¢ = 4, the probability of
drawing an ace is 4/52 or 1/13. However, there is only one ace of spades (¢ =
1) and so the probability of drawing the ace of spades is the same as the prob-
ability of drawing any specific card from a deck of 52 i.e. 1/52.

The probability of a certain distribution of molecules among the energy
levels can be defined as the ratio of the number of ways of realizing the given
distribution and the total number of possible arrangements. For a given sys-
tem, the probability of a distribution is proportional to the number of ways of
achieving the distribution. This can also be arrived at in another way.

7.b. The Language of Statistical Thermodynamics

In the case of a large number, N of particles, there is an energy distribution. If
we have n, molecules having energy £, n molecules each having energy &,
n, molecules having energy &, etc. the total energy £'is given by

E= nE +NE+NE +eeee +n¢g = n.e (7.2)
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N=n,+n+n,+n, +:- n.:Z‘ni (7.3)

In order to calculate the value of E, it is necessary to know the distribu-
tion numbers n, n, n, etc. and also the values of €, £, €, etc. In principle the
energy corresponding to the various energy levels can be obtained by solving
the appropriate Schrodinger equation.

According to the classical theory, the energy levels are continuous and there
1s no restriction regarding the energy that can be assumed. But according to
quantum theory, the energy levels are discrete and discontinuous and the mol-
ecules, if they behave like harmonic oscillators, can assume energies only in
integral multiples of a quantum of energy, i.e. € which is given by the Planck’s
eqn. € = hv, where h is the Planck’s constant and v the frequency of radiation.

The central problem in statistical mechanics is to determine the possible
distributions of particles among energy levels and energy states (fig. 7.1).
A specification of the number of particles n_in each energy level is said to
define a macrostate of the assembly. The macrostate of the assembly (con-
figuration) in fig. 7.1 is n, = 3, n, =4, n, = 3 and n, = 2. If the particles are
indistinguishable, a specification of the total number of particles in each state
(in fig. 7.1) is said to define a microstate of the assembly. The number of
energy states in an energy level is the degeneracy of the level. In fig. 7.1, the
first level is non-degenerate (g, = 1) whereas the degeneracies of levels 2, 3
and 4 are 3, 4 and 6, respectively. The particles may be distributed among the
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Fig. 7.1. Schematic representation of a set of energy levels. £ (i = 1, 2, 3, 4, etc), their
degeneracies g (i = 1, 2, 3, efc.) and their occupation numbers n. (i = 1, 2, 3, efc.)
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Fig. 7.2 Distribution of particles among various energy states in an energy level.

various energy states. For energy level 4, a few of the possible distributions
are shown in (fig. 7.2).

These are the various microstates but they correspond to the same macro-
state of the assembly. However, if the particles are distinguishable, one must
specify not only how many particles are in each state, but which particles
they are. For example, in the energy states of level 4, if the particles are
labelled a and b, some of the microstates can be represented as follows.

1 2 3 4 5 6
Energy States ___,,
Distribution of a b — — — —
Particles
a —_ b —_ —_ —
a — — b — —
— a — - b —
- — a - - b

etc.

[t is seen that the number of microstates for a given occupation number is
greater if the particles are distinguishable. However, in the same energy state,
if there are two particles a and b, the arrangement “a b’ is the same as ‘b a’ and
no new microstate is possible.

There are many ways in which the particles can distribute themselves
among the various energy levels, but whatever be the distribution, it should be
consistent with equations 7.2 and 7.3. One has to find out the most probable
distribution of particles among the energy levels for a particular fixed value of
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Table 7.1. Number of ways (W) of distributing four distinguishable particles between two
energy levels

g, g, w Total =2W
0 (@.b, c,d) 1
@b, c,d) 0 1
a bcd
b acd _ 4
C abd
d abc
bcd a
acd b 4 16
abd C [
abc d
ab ad
ac bd
ad bc
od ab 6
bc ad
bd ac

the total energy and a fixed number of energy levels. For this, it is necessary
to know the number of ways (W) in which n particles can be distributed
among the energy levels. Let us consider a simple case where n = 4 and that
there are two energy levels i.e. € and g,. Let the molecules be labelled a, b,
¢ and d. If there are no restrictions on the number of particles in any energy
level, the various ways of distributing the particles are given in table 7.1.
The different orders in which the groups of letters are arranged are called
permutations. Each of the arrangements that can be made by changing the
order of arrangement of some or all of a number of objects is called a permuta-
tion. If there are two objects a and b, they can be arranged in two ways, ab and
ba. So the number of arrangements is 2 or 2 x 1. If there are three objects a,
b, c, the third object can occupy three different places in each of the first two
arrangements giving abc, cab, acb and cba, bac, bca. The total number of per-
mutations is 6 or 3 X 2 x 1 equal to 3!. The permutations of 3 objects taking all
the three at a time is denoted by ,P, equal to 6 or 3!. Generally P_isequal ton!.
If of the n objects only r are taken at a time the total permutations possible
is represented by P. Of the r objects needed to form the arrangements, the
first can be taken in n ways. For each of the ways in which the first object was
taken there are (n — 1) ways of adding the second object. The total number of
ways of arranging these two objects 1s therefore n (n — 1). For each of these
arrangements there are (n — 2) ways of adding the third object. So the total
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arrangements there are (n — 1) (n — 2). So when each of the arrangements for
completion involves r objects, the total number of arrangements is

P=nm-1)n-2)............ (n—r+1)
This can be written as
n(n-1)(n-2)--«(n-r+1)---1  n!
(n—-r)(n—-r+1)---1 _(n—r)!

!
p__nt
" (n—-r)!

The number of permutations of n objects, all being taken at a time is n!.
The ways in which the four objects a, b, ¢, and d can be arranged taking all of
them at a time is 4! equal to 24. They are represented below:

labcd 7bacd 13cabd 19dabc
2acbd 8badc l4cadb 20dach
3Jadbc 9bcad I5cbad 2l1dbac
4adch I0bcda l6cbda 22dbca
S5acdb Ilbdac 17cdab 23dcab
6abdc I12bdca I8cdba 24dcba

Let us consider the filling of two levels, each one of the levels containing
two objects. Considering the distribution n, = 2 and n, = 2, the 24 ways of
arranging the 4 letters such that each level contains only two are given below.

E £ £ E

1 2 1 2

l ab cd 2 ac bd
7ba cd 13 ca bd

(i)| 6ab dc (i) Sac db
8ba dc l14ca db
4ad chb 9bc ad
20da cb I5cb ﬂ
3ad bc 10bec da

(i) 19da bc (iv) 16cb da
I1bd ac 17 cd ab
21d b ac 23dc ﬂ
12bd ca _l18cd Dba
M h2db ca " h4de ba
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These 24 arrangements are represented in sets of 4. Within an energy
level the arrangement ab is indistinguishable from ba. So each set consist-
ing of four arrangements actually represents only one combination. Hence
there are only 6 combinations. Each of a set of arrangements that can be
made by taking a few or all of a number of objects without considering the
internal arrangement within any group is called a combination. In per-
mutations the order of arrangement of the various objects is important. In
combinations attention is paid only to the presence or absence of the object.
The number of combinations of n objects taking r objects at a time is rep-
resented by C.

If there are two objects a and b and one wants the number of combinations
possible taking two objects at a time, there 1s only one combination since one
does not distinguish between the arrangements ab and ba unlike in the case
of permutations. If there are four objects a, b, ¢ and d and one wants to find
out the combinations takings two objects at a time one will find six combina-
tions: ab, ac, ad, bc, bd, cd. For each one of these combinations there are two
permutations. So the total number of permutations will be given by

If there are n objects and one needs to know the number of combinations
taking r at a time one can proceed as follows. The total number of permuta-
tions of n objects taking r at a time can be determined. Because in each of
these arrangements there are r objects, the same r objects are giving rise to a
group of permutations each permutation having the same objects. The num-
ber of such permutations forming the group is given by

P =r!

While trying to arrive at the number of combinations one is not concerned
with the order of arrangement of objects, but only the identity. Therefore it
will be noted that each combination has got multiplied by r! in arriving at
the total number of permutations. So the total number of permutations of n
objects taking the objects r at a time is to be divided by 1! to obtain the num-
ber of combinations of n objects taking r of them at a time.

n!

(n—r)!

P= C xrl=

nr

n!
" (n—1)!r!
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Ensembles

The energy of a molecule keeps changing with time due to intermolecular
collisions, energy transfers and motion through available space. It is neces-
sary to take the energy of a molecule as the average over a certain time. To
do the impossible task of time averaging for a system containing of the order
of an Avogadro number L of molecules, Willard Gibbs introduced the idea of
ensembles. Consider a system and the surroundings with which it is in con-
tact as constituting a distinct unit. An ensemble is formed by reproducing this
distinct unit many times. The ensemble is a set of imaginary replications and
1s a mental construction. Each member of the ensemble is subject to similar
thermodynamic constraints as the original system. The number of replicas can
be as large as is desired and when appropriate can become infinite. There are
three types of ensembles. When the units are separated by impermeable adia-
batic walls, the energy of every system is the same and the ensemble is said to
be microcanonical. For example, the number of molecules N, the volume V
and the energy of the units E will be the same in all the units (see diagram). On
the other hand, if the units are separated by a diathermic wall letting the energy
fluctuate about some average value E, while the temperature T remains the
same, the ensemble is called a canonical ensemble (see diagram). The third
type of ensemble is based on open systems where the number of molecules in
a unit is not kept constant while V and T and the chemical potential x are the
same 1n all the units. These ensembles are called grand-canonical ensembles.

N N N N N N N N N N
VT | VT | VT | VT | VT VE | VE | VE | VE | VE
N N N N N N N N N N
VT | VT | VT | VT | VT VE | VE | VE | VE | VE
N N N N N N N N N N
VT | VT | VT | VT | VT VE | VE | VE | VE | VE
N N N N N N N N N N
VT | VT | VT | VT | VT VE | VE | VE | VE | VE
N N N N N N N N N N
VT | VT | VT | VT | VT VE | VE | VE | VE | VE
N N N N N N N N N N
VT | VT | VT | VT | VT VE | VE | VE | VE | VE
N N N N N N N N N N
VT | VT | VT | VT | VT VE | VE | VE | VE | VE
Canonical ensemble of 35 systems Microcanonical ensemble of 35 systems
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VT | VT | VT | VT | VT

[T T N T
VT | VT | vT | VT | VT

boop || u |
VT | VT | vT | VT | VT

T T A R
VT | VT | VT | VT | VT

Grandcanonical ensemble of 35 systems

7.c. Statistical Thermodynamic Formulation
of the Boltzmann Equation

In general let us consider N molecules being grouped into i levels such that
the first level contains n, molecules, the second level n, molecules and so
on. Maxwell-Boltzmann distribution law which gives the canonical distri-
bution is applicable to distinguishable particles as in crystals. The number
of arrangements or permutations of N things taken all at a time is N!. This
includes equivalent arrangements such as ab and ba in the same level. Hence
N! must be divided by the number of equivalent ways in which each com-
bination is arrived at. The number of ways in which n, molecules can be
arranged in an energy level is n !. The number of non-equivalent arrange-
ments or combinations or complexions (W) is given by eqn. 7.4.

N! i
W= or N!/l;lni! (7.4)

Since nature has no preference for any particular type of distribution, the
probability, P, of any particular distribution can be considered to be directly
proportional to the number of ways (complexions W) in which the distri-
bution can be arrived at. The symbol W, comes from the German word,
Wahrscheinlichkeit, for probability. The total number of different ways (W)
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in which a given system, in a given thermodynamic state, may be realized is
related to the thermodynamic probability. The fundamental postulate of sta-
tistical thermodynamics is that all possible microstates (complexions) of an
isolated assembly are equally probable. By taking the logarithm of both sides
of eqn. 7.4, the product term in the denominator is reduced to a summation.

IMW=InN!-[lnn !+Inn,!+...... +Inn !]

=InN!-) Inn!
1

When the number N 1is large, Stirling’s approximation (eqn. 7.5) can be
used to evaluate the factorials.

INnN!=NInN-N (7.5)
iln ni!=2i‘ni In ni—zi‘ni (7.6)
i i 1
=Zi‘niln n —N (‘.‘Zi‘ni =N)
1 1
an=NlnN—N—inilnni+N
1
anlenN—Zi‘ni Inn, (7.7)
1

In an 1solated system the energy E and the total number of particles, N
are both constant. Though the total energy of the system is constant, due
to collision among particles themselves and with the walls of the container,
the distribution numbers change. However, every possible microstate taken
together must satisfy the conditions of constant £ and N. For each microstate
of a system of particles there is a particular most favoured distribution. When
this 1s reached the system attains statistical equilibrium. This state of equilib-
rium 1s one with a maximum probability and results from the most probable
distribution (sec. 4.1)

The values of n, n, etc. which make W or P a maximum have to be deter-
mined, subject to the conditions that the total number of particles should
remain constant and the total energy of the system remains constant. In the
absence of such constraints W can increase indefinitely. Since N and E are
constants any small variation in these must be zero i.e. § N =0 and 6F = 0.
Since neither N nor total energy of the system changes
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Zi‘éfni =0 and inl 0g =0 (7.8)
1 1

5ini g, =ini 581+Zi¢8i on =0 andso isi on. =0 (7.9)
1 1 1 1

When P is maximum the variation of P and hence of In P is zero.

P o Wor P=C’W, where C’ is a constant.
mMP=InC’"+InW

Substituting for In W from eqn. 7.7 in the above expression for In P equa-
tion 7.10 1s obtained

InP=InC’'+NInN->n Inn, (7.10)
1
Since N and C’ are constants and the condition for a maximum is

S(nP)=0

5(—lnP)=5(inilnni)=0 7.11)
Zi‘(c:ffni)lnni +Zi‘ni 5(lnni) =0

Zl‘(‘cffni)lnni +Zl‘ni Léfni =0
; ~ 'n

1

Y. (6n)Inn, +> 6n =0 (7.12)
1 1

2 n = N =constant, i.e., 2 5ni =0
1 1

and so eqn. 7.12. becomes Zln n =0 (7.13)
1

We require all the three conditions eqgns. 7.8, 7.9 and 7.13 to hold good
simultaneously and the required mathematical technique that is useful to deal
with this condition is Lagrange's method of undetermined multipliers. This 1s
useful in the treatment of problems involving constrained or conditioned max-
ima. In this technique, equations 7.8 and 7.9 are multiplied by two arbitrary
constants, " and f3 respectively and combined with eqn. 7.13 to give eqn. 7.14.



Y [lnn, + o'+ Be]dn, =0 (7.14)

1
or (' +Pg +Inn)on +(a’+fe,+Inn,)on, +

(o' +fe, +Inn) on, +...... =

Eqn. 7.14 is an identity based on three independent equations. o and 8

may have any values and so are independent.

Let " and Bbe given such values thatInn + o’ + e, =0and Inn, + o’ +

Pe, = 0. Eqn. 7.14 reduces to the requirement that the sum of all the terms
involving dn,, én,, etc., must also be zero. Since the variations, én,, on, etc.
are arbitrary, this will be true only if each term is separately equal to zero.

(i.e.) o'+ Pe,+Inn =0 (7.15)

or n =e% ks —1pn n = —(a' +ﬂgi) (7 16)

1

Eqn. 7.16 is the Maxwell-Boltzmann distribution law.

Zlni =N-= e‘fie’&i
1 1
Hence e = / 2 e A (7.17)
1

Substituting this value of e in eqn. (7.16),

Ne# n. e/
= or — =

Sor N yom
1 1

Eqn. 7.18 gives the populations of the most probable configuration of the

n

i

(7.18)

ensemble. This 1s called the canonical distribution.

Eqn. 7.18 1s another form of the Maxwell-Boltzmann distribution law. At

constant temperature T, n/N is the fraction of the total number of molecules
which possess the energy £. The constant, 8, can be shown to be equal to
1/kT (eqn. 7.28) where k is the Boltzmann constant. Eqn. 7.18 then becomes,

e—si/kT

n,

a__-
i

N z e &/KT

1

(7.19)
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So far it has been assumed that for each energy value there is only one
level (non-degenerate). However, if two or more quantum states have the
same energy, they may be grouped together and the energy level which was
previously considered to be single is now composite. Such energy levels
are degenerate. Consider three energy states a, b and ¢ associated with an
energy level 2. Let all of these have the same energy €,. From eqn. 7.18 we
can write.

Ne % Ne % Ne 42
: = — and n_ =

Y e Y e 2 e~
1

The total number of molecules in this energy level is

i
n,=n_+n, +n_. Itisseenthat n = 3Ne 4 /Z e Pa
1

If g is the number of energy states with the same energy &, this quantum level
is g fold degenerate. The number of molecules in that energy level increases
g-fold. g is referred to as degeneracy number. Each level must be assigned a
statistical weight of g. Then eqn. 7.19 becomes,

-&/kT
Ili . gie

(7.20)

1
N Z g e&/kT
i
1

The denominator of eqn. 7.20 is a dimensionless quantity called the parti-
tion function, or atomic or molecular partition function, 7. Eqn. 7.20 can be
written as

N gi e—si/kT
=—  where

f — Zgl e—siikT — gl e—eiikT +g2 e—sszT T gi e—s.llkT (721)

The constants o’ and 3

From eqn. 7.20, if & = 0, n. becomes equal to n, the number of particles in
the lowest energy level (ground state) and for non-degenerate levels g being 1,
eqn. 7.20 becomes,

110_1 7.22
E__? (7.22)
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From eqn. 7.16, for this lowest energy level

n = e—a' (723)

0

Even if this level is degenerate, e will be a number proportional to n,.
The constant 3 can be evaluated as follows. Entropy (S) and W are related as

S=kInW (4.65)
Using the value of In W from eqgn. 7.7,

S=kNInN-kY n Inn, (7.24)
1

Substituting for, —In n, from eqn. 7.15,

S=Kk[NIn N+ z n (e +pe)] (7.25)

ZHi = N and Zni.s‘i =F
1 1
S=Kk(NInN+a'N+ BE) (7.26)

If E is identified with internal energy U and a constant volume system is
considered (N = constant).

dU + PAV = TdS (4.22)
dJS 1

— | =— 5.36

(aU ) T 550

Differentiating eqn. 7.26 with respect to U keeping V constant, ¢’ being a
number and N being a constant.

S=k(NInN+ &’ N + fE) (7.26)
dS 1
[E)v =kp=— (7.27)
1
Hence B= T (7.28)

From the Maxwell’s law of distribution of velocities the translational
kinetic energy of a molecule, € can be shown to be 3/2 kT (sec. 7.g.2). Since
a molecule can have three degrees of freedom for translational motion, for
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each degree of freedom, contribution towards the kinetic energy, £_is kT/2
[equipartition of energy (sec. 7.1.2)].

g =kT/2
Substituting for kT from eqn. 7.28
e=128

If n, is the number of molecules in the ground state (g, = 0) it is possible
to find the ratio of the number of molecules in any energy level ¢ relative to
that in the ground state.

-£/kT
non N_ge

- —g, /KT
n, N n f g, e
-& /KT
n_&° _ 8 g
—£, /kT
n, g et g
gi —(&.—£, )/ kT
or n=n,—e 5% (7.29)
&g
i n n
szn __ 0 g0+_0 gl e-alT 4 Og e~ /kT
1 0 g(] 0
nO g /kT -, kT
=g—[g0+gle g e 4]
0
n n
N=—LYge M =2Lr (7.30)
gg 0 gg

If the degeneracy of the ground state g, = 1, from eqn. 7.30,

n 1 N

2= or =1/(n /N)=— 7.31

N/ S/ =Uny/N) n, (7.31)

Thus the partition function may be defined as the reciprocal of the mol

fraction of the molecules occupying the ground state (g, = 0). It is also the
ratio of the total number of molecules to the number of molecules in the
ground state. Thus, it indicates how the particles are distributed among the
various energy states. The relative population of any two quantum states or
levels 1 and 2 is given by
n N gle(—sllkT)/f'

1

n - N gze(—SQIkT) /f

2

= 8o T (7.32)
g,
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Ife =€ and g =g, n =n, (ie.) they are equally populated. At very low
temperatures (€, — £)) << KT, the number of molecules in any excited state n,
from eqn. 7.20 is

n o< e &=

Hence all the particles are in the lower most energy level. From eqn. 7.32
if e, > €, n, >n, and vice versa. As long as (¢, — &) is less than or is of the
same order of magnitude as kT, n, and n, will be of the same order of mag-
nitude. Thus, if there are many low lying levels of energy less than kT, they
will be well populated in relation to the ground state. Such distributions cor-
respond to large values of f. Widely spaced distribution of levels result in
uneven distributions of molecules among states and fassumes smaller values.

7.k.2. Fermi-Dirac Statistics

Here the particles are indistinguishable and the total wave function is anti-
symmetric with respect to interchange of particles. Fermions are particles
with half integral spins (e, p, n), and nuclei of atoms, ions and molecules
with an odd number of e, p and n and obey Pauli’s exclusion principle. If
the sum of the numbers of protons, neutrons and electrons is p, p = 4 for H,,
p =5 for *He, p = 6 for “He. There is a restriction on the number of fermions
which can occupy an energy level, as given by the Pauli’s principle. This can
be stated as ‘in any system of indistinguishable molecules (or other particles)
for which p (sum of the numbers of protons, neutrons and electrons) has an
odd value, each molecular quantum state can be occupied by no more than
one molecule at a time.” This restriction leads to a distribution quite different
from the Boltzmann distribution. Let g be the degeneracy of an energy level
1 (g = number of levels with the same energy). Since there can be only one
particle in each energy level, n, the number of particles can be a maximum
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equal to g. Let n  be the number of particles for an energy level g . The first
particle can be placed in any one of the available g, states. The second particle
can be arranged in (g — 1) different ways, and so on. The total number of dif-
ferent ways of arranging n. particles among the available g states all having
energy £, is given by

W’Zgi (gi_ l) (gl_z) """ [gi_(ni_ 1)]

_ &g (g —2)....[g, —(m, —DI(g, —n)[g, —(n, +])].....1
(g,—n)[g —(n +D].....1]

or W=g!/(g—-n) (7.139)

The particles are indistinguishable and n. particles can be arranged in n!
ways. Eqn. 7.139 therefore must be divided by n.! to give the number of dif-
ferent or non-equivalent ways of arranging n, particles.

g !
W=—-"1 (7.140)

n (g —n)!

If g levels are available these can be occupied in g! ways. If n, is the num-
ber of particles, these can be arranged in n,! ways and for each of the arrange-
ments the remaining (g —n,) levels that are free could have been occupied in
(g, —n)! ways. The number of different ways of arranging these particles is
thus given by eqn. 7.140. The total number of different and distinguishable
ways of arranging n, n_, n,........ etc. particles among the energy levels €, €,

g, etc. is given by eqn. 7.141.

| 1
W’ = 5 &' . or

n!(g,—n)!n (g, —n,)!

i g !
W=|l——— 7.141
) ey D

The most probable distribution is obtained by using the conditiond In W =0
(sec. 7.c) and the Fermi—Dirac distribution law is obtained as eqn. 7.142.

n = gi/(e“' efd +1) (7.142)

This can be derived as follows. Taking natural logarithms of both sides of
eqn. 7.141

an’zElngi!—ln n!-lIn(g —n)! (7.143)
1
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Applying Stirling’s formula to evaluate the factorial
InN!'=NInN-N

an*'zztgi Ing —g —(n, Inn —n)—[(g,—n)In(g —n)—(g —n)]
1
= Zgi Ing —g —n Inn +n —(g —n)In(g —n)+g —n
1
=Y ¢glng —nInn —(g -n)ln(g-n) (7.144)
1

Differentiating eqn. 7.144 with respect to n,

i 1 1
dinW’= ) —In —+Inn —|(g,—n)————In(g —n,) ||dn,

=S [(Inn —In(g —n )]dn (7.145)
; 1 1 1 1

The maximum value of W’ is obtained by equating dlnW’ to zero
Y [lnn —In(g —n)]dn =0 (7.146)

1

But Z‘dni =0; (egn. 7.8) and Za‘i dn = 0; (eqn.7.9)
1 1

Multiplying eqn. 7.8 by o', eqn. 7.9 by B (ref. sec. 7.c) and adding to eqn. 7.146
dnn —In(g -n)+a' +pfe]dn =0 (7.147)

1

Each term of the summation is equal to zero (sec. 7.c)

n.
In ——=-a'—-pfe O
(g —n)

o o' —fe)

(g, —n,)

gi _ni — e(a’+ﬁsi)

n,

é fy e(a""ﬁgi) + l
n

i

B;
or n

= AT (7.143)
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7.k.3. Bose—-Einstein Statistics

This is applicable to systems consisting of identical and indistinguishable
particles, there being no limit to the number of particles in any level. The spin
of the particles to be arranged in a three fold degenerate energy level. The
degeneracy can be indicated by partitioning an energy level. For a three fold
degenerate energy level there are two partitions. In general for g degenerate
levels, there are (g, — 1) partitions. The different arrangements are seen to be
six for a three-fold degenerate level (Fig. 7.7.). These can be considered to
be derived from (7) finding the total number of permutations of partitions and
particles, and (i7) making allowance for the fact that the particles are identical
and the partitions are equivalent. The total number of partitions and particles
=4, i.e (2+ 2) can be permutated in 4! ways or (n, + g — 1)! ways. The two
particles can be arranged in 2! ways and the partitions can be arranged in 2!
or (g, — 1)! ways. The number of ways in which the n, particles can be placed
in the i level is shown in Fig. 7.7.

n+g —1)!
— ﬁ (7.148)
n (g —1)!
In the present case
4!
T

The total number of different and distinguishable ways of arranging N par-
ticles among all energy levels is

(n, +g —-D!
_H T (7.149)

The most probable distribution is given by the eqn. din W = 0 (sec. 7.c.).
The Bose—Einstein distribution law given by eqn. 7.150 can be derived as
follows.

n =g /[e” e —1] (7.150)

Fig. 7.7. Different ways of arranging two indistinguishable particles among three fold
degenerate energy levels.
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Taking natural logarithms of eqn. 7.149
an=i[ln(ni+gi—1)!—lnni!—ln(gi—l)!] (7.151)
I
Applying Stirling’s approximation
an:i (n,+g —-DIn(n +g -1)—(n +g —1)
1
—n. Inn +n —(g - In(g -D+(g —1) (7.152)
= 2 (n+g -Dn(n +g +1)—(n +g -1)
—l(ni Inn —n)—(g -1)In(g -D+(g -1

an:Z [(n,+g - In(n +g —1)—n Inn —(g —1)In(g —1)]
1

(7.153)
Differentiating eq. 7.153
din W= 2 [In(n,+g —1)dn, —Inn dn]=0
1
—dInW= 2 [-In(n,+g —1)dn +Inn . dn]=0
1
or Z {— [In(n,+g —1)+1In ni]dn}i =0 (7.154)

1
Z‘dni =0; (egn. 7.8) and Za‘i dn, = 0; (eqn. 7.9)
1 1

Multiplying eqn. 7.8 by &’ and eqn. 7.9 by 8 and adding to eqn. 7.154

1

Z [~In(n +g —)+Inn +a&'+fe]dn =0

1

Each term of the summation is equal to zero (sec. 7.c).

—In(n, +g -D+Inn +a'+pf =0 (7.155)
(n+g)>land(n+g—1)=n+g)
n
In ——=-o' - pe
(n +g)
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n

Or v — e(fa’f)ﬁsj)
(n; +g,)
or M8 _ vy
n

1

é — e(a"*ﬁsi) _1
ni
g

or n = RCZ Y

(7.150)

From eqns. 7.142 and 7.150 it is seen that if e” e/ >1, n, =g /(e* /)
i.e. the Maxwell-Boltzmann distribution law (eqn. 7.16) appears to be the
classical limit of the Fermi—Dirac and Bose—Einstein distributions. Except
in the case of electrons in metals, or temperatures very near absolute zero,
Boltzmann distribution law is applicable to all systems. A comparative
account of the three distribution laws is given in Table 7.5.

D.2.a. Ideal Fermi—-Dirac (FD) Gas-electrons in Metals

An assembly of fermions is known as an FD gas. Consider an ideal FD
gas at low temperatures or high densities. A well-known system of this kind
is electrons in metals. According to the free-electron model of metals, the
valence electrons of the atoms of a metal can be considered to be similar to
molecules of an ideal gas and hence referred to as “electron gas”. Coulomb
repulsion by other electrons is roughly balanced by coulombic attraction of
the nuclei. The potential energy of the electrons is assumed to be constant
and independent of temperature. Hence the contribution to the total energy
of the electrons can be considered to be translational kinetic energy. Like
the atoms of a monoatomic ideal gas, these electrons would have allowed
energy levels with degeneracies for their translational motion. It is therefore
possible to calculate the translational kinetic energy distribution in different
energy states.

Consider an ideal FD gas of N fermions in a volume V. Let these par-
ticles be distributed among various energy states such that therearen, n,, ...,
n number of particles in quantum states with average energies €, €, ...,
g, respectively. If g is the degeneracy or the statistical weight of the i-th
quantum state, the most probable number of fermions with energy €, is given
by the FD distribution (eqn. 7.143).
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n = S (7.143)
' [exp(a’+PBe,) +1]

The parameter o.”is determined as a function of N and T, by the condition:

N:Zni =Z[ & (D.42)

~ [exp(o” + Bsi )+1]

Because of the factor + 1 in the denominator of eqn. (D.42), o.” need not
be restricted to o0’ 0 as in the BE case. For the FD gas o.” can be positive or
negative. As indicated earlier, the translational levels are so closely spaced
that the summation in eqn. (D.42) can be replaced by integration. Though
any number of identical bosons can occupy a given quantum state, no more
than one fermion can occupy a given state. The restriction in the case of FD
particles arises since fermions obey the Pauli exclusion principle according
to which no two fermions can be in the same quantum state. Since a sizeable
fraction of the particles will not be in the ground state we can approximate
the sum in eqn. (D.42) by an integral (cf.BE case, page 3). If FD distribution
function 1s written as:

|

)= roxp(ar + Be.)+1] (D-4)

egn. (D.42) can be written as:
N = jf(s) g (e)de (D.44)
0

In the case of electrons, g(€) de as given by eqn. (D.43) can be written as
eqn. (D.45)

2nV
h3

g(e)de = gs( J (2m)*¥? €2 de (D.45)

Here g = 2s + 1. This is the spin degeneracy and comes from (2s + 1)
different spin orientations possible for the same energy €.

An electron has two spin states (& 1/2) associated with each translational
state. For electrons, s = 1/2 and so g = 2. Hence, from eqns. (D.44) and
(D.45), one can write:

_ [ 2rV i f el2de
N_z( h? )(2"‘) '([[exp((x’+[38i)+l] (D-46)




As discussed on page 5, if x = €¢/KkT and dx = de/kT, eqn. (D.46) can be
written as eqn. (D.47):

2V 2 7 112y
N = —3 (275ka)3’(2 J. s P
h Jr ) [exp(o +x) +1]
:1_‘3’(27:ka)3sz(¢) (D.47)

As discussed earlier (pp6) eqn. (D.47) can be written as eqn. (D.48) where
exp (—o.’) is written as A.

J- T Ax"? exp(—x)dx
Jr | [1+Aexp(—x)]

The integral in eqns. (D.47) and (D.48) must be evaluated for both posi-
tive and negative values of a’. For this purpose, it is convenient to express o.”
as —W/kT, where p 1s the chemical potential. It is more convenient to work
with chemical potential p in this case since p approaches a finite value, p at
T =0, whereas o.”becomes negatively infinite [ref. eqn. (D.51)].

Eqns. (D.46) and (D.47) can be written as:

F(o') = (D.48)

1/2
N = 2Y) 2emkT) j ede (D.49)
h3 [exp(e —Ww)/KT]+

Sommerfeld solved it by expressing the result as an infinite series and
obtained eqn. (D.51):

4

2
u=eg,[l —’1‘:—2(1@/31:)2 +g—0(kT/sF)4 o] (D.50)

The quantity € is constant for a given metal and is called the Fermi energy.
When T=0,p=p,=¢.
The FD distribution function can be written as eqn. (D.51)

1
= D.51
fe) [exp([e — u]/kT) +1] ( :

The significance of the Fermi energy (€;) can be seen as follows. If € < p,
(e—p)<0atT=0, the term (€ — n)/kT = —oo. Therefore, the exponential term
in eqn. (D5-1) becomes zero and so f(€) = 1. This means that all levels with
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energies less than pu=p =¢_(at T =0) are fully occupied with one electron in
each state. If € >, the term (€ — p) is positive. Hence at T = 0, the exponential
term equals + « and so, f(€) is equal to zero. Thus there are no electrons in
energy levels having energies greater than €_. In other words, at absolute zero
of temperature, all the states with energy less than €_are occupied and those
with energy greater than €, unoccupied. Thus €, has the property of being the
cutoff energy. Fermi energy is defined as the maximum energy of an electron
at absolute zero and the corresponding level is called Fermi level. This infor-
mation about €_ can be used to derive a function to calculate €. Eqn. (D.46)
can be written as eqn. (D.52)

A

4V :
N="""(2m)*" | ede (D.52)
b /
Or
3/2
Nz ST 2m)
3 ( he F
. _”’ _h—2 i 2/3 E 2/3
FTN0 T omlsn) (v
h? (3N
S (i (D.53)
8Sm\ VvV

The FD distribution function [eqn. (D.51)] can be expressed in the form
of Fig. D.4, where f(¢) is plotted vs. € schematically. It will be seen from
Fig. (D.4) that at T =0, f(e) = 1 for € < p and zero for € > p. For a particu-
lar level at which € = 1, (¢ — pu) = 0 and at any temperature T above T = 0,
f(e) = 0.5. If the temperature is not too great, u = €_ and so one can say that
any temperature above T = 0, the Fermi level is 50% occupied.

It is seen from eqn. (D.53) that €_is a function of electron density (number
of electrons per unit volume) but is independent of T.

7.g.4. Diatomic Molecules—Rotational Partition Function

If a diatomic molecule is considered as a rigid or rotating dumb bell, the
energy of rotation is £, = 5 I®@?, where I is the moment of inertia (Ref. Prob.
7.10) and @ is the angular velocity of rotation. According to the quantum

theory the angular momentum, I is quantized and is given by the equation,

Iw=[J(J+D]"*h/2x

where .J is the rotational quantum number that can have only integral values,
0, 1, 2, 3 etc. For linear molecules, the permitted rotational energies are given

by eqn. 7.75.
e = (Iw)*  J(J +1)h?
f 21 8771

33

(7.75)



If h%/8x’1 is denoted by B, eqn. 7.75 can be written as

e =BJ (J+1) (7.76)

Every J level has (2J + 1) states corresponding to (2J + 1) different orien-
tations of the rotating molecule. These states are distinguished by quantum
numbers —J to +/. Every J level is (2J + 1) fold degenerate. The rotational
partition function becomes

fr =3 gi e—fr*'kT

J=co

f; — Z(ZJ +1) el (J+1)h? /(822 /IkT)] (7.77)

I=0

For non-linear polyatomic molecule like methane the rotational partition
function is given by eqn. 7.96 (vide infra).

If I is sufficiently large, the rotational energy levels become so closely
spaced as to be practically continuous. This is the case for all diatomic mol-
ecules except those like, H,, D, etc. I being of the order of about 10" kg m?’,
the exponential term becomes very small. Hence the summation can be
replaced by an integration

f = J'(2J+ ) el-J(J+)h2/(8x2KT)] {7
0

h2
e is represented as 8’, the above eqn. becomes
V3
f,=[@I+1) e dy (7.78)
0
Let o = J(J+1)

da’ =(2J +1)dJ

Eqn. 7.78 then becomes

fo= e daf (7.79)
0
2
or fod ST (7.80)
T ﬂ/ h2
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One has to take into account the fact that every molecule cannot take all
values of J. In the case of a homonuclear diatomic molecule like “N“N,
BCIBCL, %00 ete. rotation by 180° interchanges two equivalent nuclei, and
the new orientation is indistinguishable from the original. In counting all the
J values we are counting such identical orientations also. So we must divide
the degeneracy by two or the integral giving the total partition function for
rotation by two. This enables one to avoid counting indistinguishable orien-
tations as though they were distinguishable. The factor two is the symmetry
number (o) for the homonuclear diatomic molecule. Eqn. 7.80 is applicable
to heteronuclear diatomic molecules. For a molecule like ammonia, though
heteronuclear, the symmetry number is three and for methane it 1s twelve.

The symmetry number can be calculated simply by counting the number
of indistinguishable orientations of the molecule that can be reached by rota-
tional symmetry elements.

The symmetry number is obtained by considering the three dimensional
model of the molecule and determining the number of indistinguishable posi-
tions when the molecule is rotated through 360°. For complicated molecules
this is a tedious procedure. However, if one finds out the point group to which
the molecule belongs, the symmetry is immediately revealed because each
point group has associated with it a particular symmetry number. More than
one point group has the same symmetry number. Table 7.2 gives the symme-
try numbers and moments of inertia of some common molecules.

S2IkT
oh?

Eqn. 7.80 thus becomes [, = (7.81)

For linear polyatomic molecules like CO, having a plane of symmetry,
eqn. 7.81 with o = 2 can be used. For other linear triatomic molecules like
N =N =0 also, eqn. 7.81 can be used but with o= 1. The rotational energy
per mol of a diatomic gas molecule, U is given by eqn. 7.82.

d(
ddn f) = LkT?2 %m [87%1kT/oh?]

= LkT (7.82)

7.g.5. Partition Function and Vibrational Energy

A harmonic oscillator can be taken as the simplest model of a vibrating mol-
ecule. In harmonic vibration, the restoring force is directly proportional to
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the displacement and the potential energy curve is parabolic. If the restoring
force is not proportional to the displacement, an anharmonic vibration results.
The vibrational energy levels are given by the equation

E = (v + %] hv (7.83)

where v the vibrational quantum number can be zero, 1, 2 etc., v is the fre-
quency of vibration and h is the Planck’s constant. The energy levels are
equally spaced in the case of a simple harmonic oscillator but for an anhar-
monic oscillator the levels get closer together as v increases. Many molecules
can be considered to be harmonic oscillators at low values of v and this is a
reasonable approximation for molecules at ordinary temperatures, since most
of the molecules will be in lower energy levels.

For the lowest energy level v = 0, the vibrational energy i.e. the zero point
energy is equal to hv/2. The vibrational energy of any level referred to the
zero point energy 1s given by

£ = (v + %] hyv —hv/2 =vhyv (7.84)

For each mode of vibration eqn. 7.84 holds good. A linear polyatomic
molecule can have (3n—5) vibrational modes while a non-linear poly-
atomic molecule can have (3n—6) vibrational modes (secs. 7.1.2 and 7.1.3).
Some of the vibrational modes may have identical frequencies and are
degenerate.

Harmonic Anharmonic
=
2
@
o
L
hv
1/2 hv
Internuclear Separation —»

Fig. 7.3. A schematic representation of energy levels in harmonic and anharmonic
oscillators.
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The vibrational energy relative to the lowest vibrational level is given by
eqn. 7.84 and can be written as

— o ot
8\' - £v Ev(o)

where £ isthe vibrational energy of a given level and £,  is that of the low-

EV{O)
1
est vibrational level (ground state). 8:(0} is givenby hv/2 and £ = (‘V + E) hv.

By using & the vibrational partition function can be written as

V=co

1] =
—| v+—= |hw/kT
j‘;,’ — Z e ( 2 — e—hv/2kT Z o—Vh/kT
v=0 v=0
= e I/2KT (] 4 g hKT | o 20wkT 4y
If e™XT =y, the sum (S)

l+e™ T ey | =14+y+y +...
S=1+y+y*+...

Multiplying both sides by y, one obtains

yS=y+y'+y+...=5-1
yS=S-1(G.e.)S—-yS=1

S(1-y)=1
1
S=——
1-y
Thus, 14 ek g=20kT 4 _ 1
| — g-hw/kT

f;r’ — c—hw‘EkT/(l _ c—hvfkT)

However if the vibrational energies are measured with reference to the lowest
vibrational level, the partition function (f) is given by eqn. 7.85. The ‘scaled-
partition function’ f, and /.’ the actual partition function are related as

- —hv/2KT
1= he

fv — Z (e—s‘,fkT) — z e~ Vhv/kT (785)
v=>0 v=0

In many molecules the vibrational frequencies are high and so hw/kT >> 1.
Consequently the value of f’ becomes equal to f, and approaches unity
(eqn. 7.86).
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If hv/kT is written, as x, equation 7.85 becomes,

Y=oo

f,=Y e (v=0,12,..)
v=0

=l+e+e X+ + ...
=1/(1 —e™)
f,=1(1—-e™) = (1 —e™)";(vide supra) (7.86)

Because e is negligible compared to 1, f = 1. hv/k has the dimension of
temperature [(Js X s/JTk™") = k] and is called the characteristic temperature
for vibration, 6.

Thus eqn. 7.86 can be written as

f, ==y

If there are several vibrational modes and if these are independent, one
has to take the products of the f terms, one for each vibrational mode i.e.

~hw'kT 3

1
1, =111, At moderate temperatures hv/kT is large and so e is rather
1

small. The vibrational partition function f, is then close to unity (prob. 7.7)
i.e. all the molecules are likely to be in the lowest vibrational level. As the
temperature is raised hv/kT decreases and f, increases. At high temperature
the molecules occupy higher vibrational levels also (v =1, 2 etc). The contri-
bution from the vibrational partition function to the energy becomes appre-
ciable at high temperatures.

Eqn. 7.86 can be used to calculate the vibrational partition function for a
diatomic molecule at all temperatures, on the basis of the assumption that the
diatomic molecule is considered as a simple harmonic oscillator. Since the vibra-
tion frequency, v, is known from spectroscopic data, it is possible to calculate f,.

Problem 7.7. Calculate the vibrational partition function for nitrogen gas at
300 K, if the vibration frequency is 2360 x 10> m™.

fv — [l o e—hw"kT]—l

The vibration frequency is given in wave number units i.e. in m™. If v is
the wave number corresponding to the vibration frequency v, v ¢ = v. Hence

f — [1 _ e—hcwkT ]—1
6.625x107* x3x10® x2360x10?
1.38x1072 x300

hev /KT =

=11.33
_fv[l—e‘h“_'m ]—1 =1 —e 113 ]—1 =1.000
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The vibrational contribution to the total energy of the molecule, in excess
of the zero point energy can be calculated by using eqn. 7.85.

RT?
3 E(f)

d
U =T Y. 71=
v grin-f1=

If eqn. 7.86 is written as f, = (1 — e*)"' where u= 8/T, then

RT2 RT? d dU
v —(f ) X —— —[d-e")"]—
f, du T (l—c) dU dT
B RT2 g-u G_v B , gt 6
S (l—ev) T (1-em)PT* 0 (1-e) T2
1
U =R#& (7.87)
v Y(e"-1)
Eq. 7.86 expressed as f, = (1 —e ™)' on similar treatment gives,
d
U =RT?—[In(l1 —e™AT)]-!
. T [In( )]
d h
= —RT? —In(1 —e&T)
dT
— —RT? e—hvikT (—hv]
(1— e wiT) kT2
Writing hv/kT as x
2 -X
__RT* | E] _ RTxe (7.88)
(1-e*) \T) (-e)

Eqn. 7.88 can also be derived by using f’. The vibrational energy,
d
U =kT?—[In f'*
y T 1]

d
Uv = LKkT? ﬁln[e—hvmﬂ/(l — g hvikT )]

h —hw/kT h
= LkT? Y + © X Y
2kT?  (1—e ™AT) KT?
—hw'kT
th +Lhv e
(l_e—hwfkT)
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Lhv/2 is the zero point energy per mol i.e. U,

—hw/kT

U, -U, = Lhy—
v (1—emkT)
Lh —hvw/kT
(U, -U,)/T= V( © )
v T l_e—hvfkT
If hv/KT 1s written as x
Rx.e™
(U —U)T=—"
' (I-e™)

The values of (U — U )/T corresponding to various values of x have been tabu-
lated by Aston [H.S. Taylor and S. Glasstone, Treatise on Physical Chemistry,
III Edn. Vol. 1, p. 655]. If v is known one can calculate the vibrational contri-
bution to the internal energy at any temperature. It will be seen that this equa-
tion reduces to eqn. 7.88 if U = 0 i.e. if the scaled partition function is used.
Dividing both the numerator and denominator by €, eqn. 7.88 becomes
RT.x

U, = - (7.89)

The vibrational contribution to the heat capacity is

c =(8_U] _ 0 | pp hvKT
v \9T )y AT (M-

— R[E R _ﬂ]
k (ehvjkT _1)2 kT2

hv )’
=R| — | e™/T (e _1)2
KT
2ax
C = (RK 2)2 - (x = hv/kT) (7.90)
e* —

The vibrational contributions to other thermodynamic functions are given
below.

G,=A =RTIn(1-¢7) (7.91)

(v f, does not depend on V and dP = 0)
H =U =RTx (e*- 1) (7.92)
S,=R[x(e*— 1) —In (1 -e™)] (7.93)
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Problem 7.8. The vibrational frequencies in m™ for CO? are v, = 1350 X

10°, v, =672.2 X 10* and v, = 2396 x 10°. The second mode of vibration has a
degeneracy of 2. Calculate the following for CO,(g) at 298 K.

(#) Vibrational partition function (f,),
(#) Vibrational contribution to C,,
(#fi) Vibrational contribution to entropy and

(iv) Characteristic temperature for vibration for each vibrational frequency.

(/) The partition function has to be calculated for each mode of vibration.
Let these be f, £, and f,.

fo= 10100

(. second vibrational mode is doubly degenerate,
so f} is used)

S, =[1—exp(=hev/kT)]"!
he/KT = (6.625 x 10 x 3% 108)/(1.38x 10-)(298) = 4.83x 10~

Hence for each v value the values required can be tabulated as follows.

1027/m | x=DY o & | 6,k - i
kT T ¥
1351 6.52 1942 | 000147 | 1.001
6722 3.24 9655 | 00389 | 1.040
6722 3.24 9655 | 0.0389 | 1.040
239 1156 3445 | 9.44x10% | 1.000

£,=1.001 (1.04)* 1 = 1.083
(if) C, (vib)=Rx*e¥(e*— 1)

The contribution from each mode of vibration has been calculated using
the values of x and added.

X xte¥/(ex— 1)
6.52 0.063
3.24 0.445
3.24 0.445

11.56 0.0013
0.9543

C, (vib) = 8.314 X 0.9543

=793 JK ! mol!

(iii) Here also the contribution from each mode of vibration has to be
calculated. Using Eqn. 7.93, S, can be calculated.
S, =R[x(e*-1)"In(1-e7)]
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X x/(ex —=1) —In(1-e% [ X —In(I—e")]

(ex -1)
6.52 0.0096 0.0015 0.0111
3.24 0.130 0.04 0.170
3.24 0.130 0.04 0.170
11.56 0.001 9.54 x 10 0.00011
0.35121

S, =28.314(0.35121)
=2.92 J K ! mol!
(iv) The values of 8 = hv/k are in the first table.

7.8.6. Electronic Partition Function

The electronic partition function, f’is given by the expression

f:= (go)ee—ﬂtse Jo 4 (g,), e Pleh 4 (82 )ec—ﬁ{fe h 4.,
= e Ble), [(go )e + (gl )ec_ﬂ{‘“e h o+ (g2 )ee_ﬁmfe h (794)

Here 8= 1/kT, (g), is the degeneracy of the i” level and (Ag)). = [(€,), — (&), ]
is the difference in energy between the i electronic energy level and zeroth
electronic energy level. The values of € can be obtained directly from the
electronic spectra of atoms and molecules.

Eqn. 7.94 can be written as

f:= f;c_{se)ofkT

where f is the scaled partition function, since the energies of all the elec-
tronic energy levels are measured with respect to the lowest electronic energy
level (ground state). Except in a few cases, the values of (Ag ), are quite large
compared to kT (4.14 X 107 erg or 4.14 x 107" J at 300 K) so that an atom
or molecule is more likely to be in its electronic ground state. In general,
the lowest electronic levels of atoms and molecules are non-degenerate i.e.
(g,). = 1, except in the case of a few species like Tl [(g ), = 2], O,[(g,), = 3]
and NO [(g ), = 2]. Thus

£ = (g,), or £7=(g,), e
In the evaluation of many of the thermodynamic quantities like U, G, S
ete. (sec. 7.e.2) the term, d In f,/dT occurs.
In f’=lIn(g)), —[(¢,),/kT]
dIn f’
dT

=(€,),/kT?
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If (U,), is the electronic contribution to internal energy at a temperature T
and (U,), is that at 0 K.

(U),=kT?(dInZ/dT) =LKkT? (d In f/dT)
(U,),=LKkT?(g)/kT*=L(e),
It will be noted that at low and lower temperatures the electronic contribu-

tion to the internal energy is independent of temperature.
(U)), — (U,), 1s thus zero. Similarly

(S,), = Lk In £+ LkT(d In f7/dT)

Lk(e,), (£.),
T

+LkT ———

kT?

=LklIn(g)), -

(S,), =Lkn (g,

The electronic contributions to entropy and energy of an assembly are thus
the same at all ordinary temperatures. It will be seen that the same conclusion
is arrived at by using f instead of f" since

‘fe’= j;c—(se )y KT

and (€ ), 1s small compared to kT. Electronic energy separations (Ag)_are usu-
ally very large and so the exponential terms in eqn. 7.94 are all very small.
For the ground state (&), is zero. Hence from eqn. 7.94, S or /. 1s unity.

An important exception to this result is encountered in the case of atoms
and molecules having a degenerate ground state. In such a case from eqn. 7.94
it is seen that /" or f = (g,).. In the case of alkali metals, for example, the
ground state is doubly degenerate and the electronic partition function 1s 2.
In the case of nitric oxide the first excited electronic energy level is doubly
degenerate and lies 121 X 10> m™! above the ground level which is also doubly
degenerate. From eqn. 7.94,

f — 2+2€—(me}1IkT
(Ag.), /KT = hew /KT
_ 6.625 x10* x3x10% x121x10?
1.38x107 3T

=174.2/T
f =242 121

At room temperature (300 K), /. =2 + 2 (0.56) = 3.12. Only at very high
temperature will /. approach 4.
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7.g.7. Total or Combined Partition Function

This is given by the product of the separate partition functions (sec. 7.g.1).
For a monoatomic species the translational partition function /, alone is to be
considered.

(27mkT)¥2V
f monoatomic = h3

(7.66)

For a diatomic molecule, it is assumed that the molecule is a rigid rotor
even though the atoms are vibrating and the vibration is assumed to be har-
monic in nature. Further these rotations and vibrations are considered to be
independent. The total or combined partition function is represented as f°

-fdiatnmic =f; fr }:'

oo (27mkT)*?V 87* IKT
h?3 oh?

(1—exp[-hv/kT])™! (7.95)

For polyatomic molecules it is generally supposed that the ground state of
the molecule is non-degenerate i.e. consists of a single electronic level. The
excited states do not contribute to the total partition function. A linear mol-
ecule containing more than 2 atoms is considered like a diatomic molecule.
It has only two rotational modes. For a nonlinear polyatomic molecule the
rotational partition function is given by eqn. 7.96.

p 8> (8x* 1, 1,1 )2(KT)*?

ABC
o oh®

(7.96)

because of the three degrees of rotational freedom. Here I o Ly and I are the
moments of inertia of the molecule with respect to three mutually perpendicu-
lar axes. While a linear molecule has (3n — 5) modes of vibration, a nonlinear
molecule containing n atoms has (3n— 6) modes of vibration (sec. 7.1.3). Each
of these vibrational modes will contribute one factor analogous to eqn. 7.86

to the total partition function. Hence in eqn. 7.95 one should include (3n — 6)

or (3n — 5) factors, each of the form [1 — exp (— hv/kT)] .
1=3n-5)or (3n—6)=x

or fv — i:—i |:1 — o /KT ]—1 (7.97)
i=1

Depending upon the temperature, 1 will assume different values ranging from
1=1to1=(3n-15) or (3n— 6). Only at very high temperatures its value will

become (3n— 5) or (3n — 6).
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